DIVISION 26 ELECTRICAL

<table>
<thead>
<tr>
<th>Division</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 00 00</td>
<td>ELECTRICAL</td>
<td>2</td>
</tr>
<tr>
<td>A.</td>
<td>REFERENCE ABBREVIATIONS</td>
<td>2</td>
</tr>
<tr>
<td>B.</td>
<td>ELECTRICAL ABBREVIATIONS</td>
<td>2</td>
</tr>
<tr>
<td>C.</td>
<td>EQUIPMENT DEFINITIONS</td>
<td>2</td>
</tr>
<tr>
<td>D.</td>
<td>DRAWING REQUIREMENTS</td>
<td>3</td>
</tr>
<tr>
<td>E.</td>
<td>DESIGN REQUIREMENTS</td>
<td>3</td>
</tr>
<tr>
<td>F.</td>
<td>POWER SYSTEM DESIGN</td>
<td>4</td>
</tr>
<tr>
<td>26 05 00</td>
<td>ELECTRICAL COMMON WORK RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>A.</td>
<td>BASIC ELECTRICAL MATERIALS AND METHODS</td>
<td>5</td>
</tr>
<tr>
<td>B.</td>
<td>WIRE CONNECTIONS</td>
<td>5</td>
</tr>
<tr>
<td>C.</td>
<td>LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES</td>
<td>5</td>
</tr>
<tr>
<td>D.</td>
<td>GROUNDING AND BONDING</td>
<td>6</td>
</tr>
<tr>
<td>E.</td>
<td>RACEWAY AND BOXES</td>
<td>7</td>
</tr>
<tr>
<td>F.</td>
<td>EMPTY CONDUIT SYSTEMS</td>
<td>9</td>
</tr>
<tr>
<td>G.</td>
<td>IDENTIFICATION</td>
<td>9</td>
</tr>
<tr>
<td>H.</td>
<td>SHORT CIRCUIT, DEVICE COORDINATION AND ARC-FLASH STUDIES</td>
<td>10</td>
</tr>
<tr>
<td>26 09 00</td>
<td>ELECTRICAL SYSTEM INSTRUMENTATION AND CONTROL</td>
<td>11</td>
</tr>
<tr>
<td>A.</td>
<td>CONTACTORS</td>
<td>11</td>
</tr>
<tr>
<td>B.</td>
<td>LIGHTING CONTROL DEVICES</td>
<td>11</td>
</tr>
<tr>
<td>26 20 00</td>
<td>LOW-VOLTAGE ELECTRICAL SYSTEM</td>
<td>14</td>
</tr>
<tr>
<td>A.</td>
<td>BUILDING DISTRIBUTION DESIGN</td>
<td>14</td>
</tr>
<tr>
<td>B.</td>
<td>DRY TYPE TRANSFORMERS</td>
<td>14</td>
</tr>
<tr>
<td>C.</td>
<td>SWITCHBOARDS</td>
<td>15</td>
</tr>
<tr>
<td>D.</td>
<td>PANELBOARDS</td>
<td>16</td>
</tr>
<tr>
<td>E.</td>
<td>ELECTRICAL METERS</td>
<td>17</td>
</tr>
<tr>
<td>F.</td>
<td>DISTRIBUTION EQUIPMENT</td>
<td>17</td>
</tr>
<tr>
<td>G.</td>
<td>CIRCUIT PROTECTIVE DEVICES</td>
<td>17</td>
</tr>
<tr>
<td>H.</td>
<td>MOTOR CONTROLS AND CONTACTORS</td>
<td>17</td>
</tr>
<tr>
<td>I.</td>
<td>VARIABLE-FREQUENCY MOTOR CONTROLLERS</td>
<td>18</td>
</tr>
<tr>
<td>26 30 00</td>
<td>FACILITY ELECTRICAL POWER GENERATING AND STORING EQUIPMENT</td>
<td>19</td>
</tr>
<tr>
<td>A.</td>
<td>PHOTOVOLTAIC COLLECTORS, WIND TURBINES, FUEL CELLS AND MICROTURBINES</td>
<td>19</td>
</tr>
<tr>
<td>26 32 00</td>
<td>PACKAGE GENERATOR ASSEMBLIES</td>
<td>19</td>
</tr>
<tr>
<td>A.</td>
<td>ENGINE DRIVEN GENERATOR SETS</td>
<td>19</td>
</tr>
<tr>
<td>26 36 00</td>
<td>TRANSFER SWITCHES</td>
<td>20</td>
</tr>
<tr>
<td>A.</td>
<td>AUTOMATIC TRANSFER SWITCHES</td>
<td>20</td>
</tr>
<tr>
<td>B.</td>
<td>EMERGENCY SYSTEMS</td>
<td>20</td>
</tr>
<tr>
<td>C.</td>
<td>LEGALLY REQUIRED STANDBY SYSTEMS</td>
<td>21</td>
</tr>
<tr>
<td>D.</td>
<td>OPTIONAL STANDBY SYSTEMS</td>
<td>21</td>
</tr>
<tr>
<td>26 40 00</td>
<td>ELECTRICAL PROTECTION</td>
<td>21</td>
</tr>
<tr>
<td>A.</td>
<td>FACILITY LIGHTNING PROTECTION</td>
<td>21</td>
</tr>
<tr>
<td>B.</td>
<td>SENSITIVE ELECTRONIC EQUIPMENT</td>
<td>21</td>
</tr>
<tr>
<td>26 50 00</td>
<td>LIGHTING</td>
<td>22</td>
</tr>
<tr>
<td>A.</td>
<td>GENERAL</td>
<td>22</td>
</tr>
<tr>
<td>B.</td>
<td>INTERIOR LIGHTING</td>
<td>22</td>
</tr>
<tr>
<td>C.</td>
<td>EMERGENCY/EXIT SIGN LIGHTING</td>
<td>24</td>
</tr>
<tr>
<td>D.</td>
<td>EXTERIOR LIGHTING</td>
<td>25</td>
</tr>
</tbody>
</table>

Unless stated otherwise, the standards in this Facilities Design Manual (FDM) are directed to the Design Professional to incorporate into the Project. Although the Owner encourages improved concept, method and product recommendations by the Design Professional, deviation from these standards, including product requests for “approved equivalent” status, requires written justification from the Design Professional and written approval from the Owner’s Representative before completion of Design Development Documents.

Changes to this Section since the last issuance are indicated with yellow highlighted text.

Links to Support Documents, external webpages and other FDM sections are shown in underlined text.
26 00 00 ELECTRICAL

A. REFERENCE ABBREVIATIONS

1. ANSI American National Standards Institute
2. ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc
3. IES (IESNA) Illuminating Engineering Society (Illuminating Engineering Society of North America)
4. NEMA National Electrical Manufacturers Association
5. UL Underwriters Laboratories Inc

B. ELECTRICAL ABBREVIATIONS

1. AWG American Wire Gage
2. GFCI Ground Fault Circuit Interrupter
3. IDF Intermediate Distribution Frame
4. MDF Main Distribution Frame
5. KWH Kilowatt-Hour

C. EQUIPMENT DEFINITIONS

1. Battery Powered Emergency Lighting Unit
 A fixture with an integral emergency battery powered supply and means for controlling and charging the battery; also known as an emergency light set.

2. Branch Panelboard
 Fed from the main switchboard or distribution panelboard and feeds branch circuit loads such as lighting, receptacles and smaller motors.

3. Dedicated Circuit
 A branch circuit from the nearest available branch panelboard which will serve only one load or group of loads of a sensitive type, (i.e. computers, lab equipment, etc.)

4. Distribution Panelboard
 Fed from the main switchboard and feeds branch panelboards, motor control centers, or major discrete loads.

5. Fixture (Luminaire)
 A complete lighting unit, exit sign or emergency lighting unit that includes one or more lamps and the parts required to distribute light, position and protect lamps and connect lamps to a power supply.
 a. Internal battery powered exit signs and emergency lighting units also include a battery and means for controlling and recharging a battery.
 b. Emergency lighting units may or may not have integral lamp heads.

6. Integrated Equipment Short Circuit Ratings
 Application of a series of connected circuit breakers in combinations that allow some breakers to have lower individual interrupting ratings than the available fault current.
 a. Permitted only when series combinations have been tested and listed by UL.

7.Interrupting Rating
 Maximum fault current, in RMS symmetrical amperes at maximum listed voltage, that a device will interrupt (open) to clear a faulted circuit.
 a. Device must still be operational after interrupting the fault.

8. Isolation Transformer (Non shielded)
 A transformer with primary and secondary windings insulated from each other.

9. Isolation Transformer (Shielded)
 Same as non-shielded except has an electrostatic shield between the primary and secondary to attenuate noise.
10. **Main Switchboard**
Switching, disconnecting, over current and metering equipment rated 600 volts or less which feeds distribution panels and/or branch panelboards or motor control centers.

11. **Motor Control Center**
A structure which groups and houses several "modular" type motor controllers and may also contain fusible disconnects or circuit breakers.

12. **Noise Suppression**
May be applied to any circuit and consists of radio frequency chokes and/or capacitors to shunt high frequency noise to ground.

13. **Power Conditioning**
May be applied to any circuit (usually to individual pieces of equipment) and must be selected and sized for the exact load it serves.
 a. A voltage regulator or isolation transformer is a type of power conditioning.

14. **Surge Suppression**
May be applied to any circuit and consists of varistors and/or similar type suppressors with a maximum clamping voltage of approximately 260VAC for 120VAC circuits with suppression applied between all conductors.
 a. Devices are bi-directional and protect against transient voltage spikes and minor lightning strikes.
 b. See paragraphs under Section 26 40 00.

15. **Uninterruptable Power Supply**
Furnishes power for a limited time to a load on complete loss of building power, to allow an orderly shutdown of equipment without causing damage or loss of data.

16. **Withstand Rating**
Maximum fault current, at maximum rated voltage, in RMS symmetrical amperes that a device can withstand (pass) during a fault and function after the fault is cleared.

D. DRAWING REQUIREMENTS

1. Show, as a minimum, the following information on the Drawings.
 a. Symbols list
 b. One line diagrams for all systems involved
 c. Connected load at each switchboard, panelboard, motor control center, etc
 d. Panelboard schedules with connected loads
 e. Fixture schedules
 f. Home runs to panels, marked with circuit numbers
 g. Adjacent to dedicated circuit receptacles, note type of equipment intended to use receptacle, for example, a "-80º Freezer", "Laminar Flow Hood" or "Incubator".
 h. Location and identification of all telecommunication IDF's, MDF's and data jacks.
 1) The Owner's Representative will furnish information.
 i. Horsepower or amperage, voltage, phase, and NEMA starter size for each motor
 j. Size and class of current limiting rejection type fuses, if combination starters or starters with fusible disconnects are on the line side of the starter
 k. Amperage, voltage and phase for special electrical loads.
 l. Size and class of current limiting rejection type fuses, if fuses are employed.

2. If coordination studies are required, submit the documentation to the Owner's Representative by inclusion in the Maintenance Manual.

E. DESIGN REQUIREMENTS

1. In general, specify materials inspected, approved and listed by Underwriters Laboratories and that bear a UL label or a UL recognized component label where labeling services for that type material are available.
2. Design following National Electrical Code (NEC) voltage drop guidelines.

3. Wherever possible, do not show conduit for branch circuits or panelboard feeders in the following locations.
 a. Under, or embedded within, a concrete slab-on-grade
 b. Embedded within an elevated concrete slab

4. If conduit must be buried under a slab-on-grade, mark the location of the conduit with a yellow tape buried 12 inches above the conduit.

5. Specify each piece of equipment connected to the Owner's Building Automation System (BAS) requires a dedicated 120 VAC 20 amp circuit.

6. Specify a neutral conductor installed for each phase wire
 a. Without exception, do not specify "shared" or "common" neutrals.

7. Minimize the use of dedicated circuits except for research- or electronically-sensitive equipment, based on electrical load and equipment requirements.
 a. For definition of dedicated circuit, see Section 26 00 00 C2.
 b. For drawing requirements, see Section 26 00 00 D1h.

8. Do not specify aluminum wire, cable, buss bars or buss structures.

9. Design for GFCI protection as required by code and as follows.
 a. For all receptacles in mechanical rooms and wash down areas, and for receptacles within 6 feet of a water cooler, vending machine, sink, shower, eye wash or hose bib in areas including, but not limited to, wet labs, restrooms, kitchens and custodial closets

10. Provide a GFCI receptacle if the receptacle is visible and accessible to test and reset; otherwise provide a receptacle protected by a GFCI breaker.

11. The following are exceptions where GFCI protection is not required.
 a. Equipment that has factory installed code-compliant GFCI protection
 b. A receptacle that powers a permanently installed fire alarm system or security alarm system
 c. A single or duplex receptacle that powers equipment that contains critical research material with a sign adjacent to the receptacle that reads, "THIS RECEPTACLE IS NOT GFCI PROTECTED. ONLY EQUIPMENT CONTAINING CRITICAL RESEARCH MATERIALS IS TO BE PLUGGED INTO THIS RECEPTACLE"
 1) Provide space for a 3 inch by 5 inch sign immediately adjacent to the receptacle.
 2) Sign will be fabricated and installed by Owner.

12. For utility electrical standards, see paragraphs under Section 33 70 00 in FDM Part 2/Div 33 Utilities.pdf.

F. POWER SYSTEM DESIGN

1. Normal service to a building will be a 4160 or 13,800 volt radial feeder from the Owner's existing underground system.

2. Design the electrical service to have a metal enclosed three-phase switch and fuse assembly or vacuum interrupter Switch with electronic fusing for each required transformer.

3. Incorporate primary metering where multiple transformers are required.

4. Incorporate secondary metering where only one transformer is required.
 a. Locate on or adjacent to the main distribution panel.

5. Normally specify the transformer's secondary voltage to be either 120/208 volt or 277/480 volt 3 phase 4 wire.
 a. Because the secondary voltage will be determined by facility requirements, discuss what voltage to use with the Owner's Representative.

6. Minimize the quantity of dry type step-down transformers distributed throughout the facility.
7. Discuss with the Owner's Representative the use of isolation transformers with variable speed drives.

8. Design main electrical room to include both normal power equipment and emergency power equipment (generator distribution equipment and Automatic Transfer Switches) for standard building projects. Discuss need to design physically separated normal power and emergency power rooms based on applicable building codes with Owner's Representative.

9. When a new or existing project requires a new utility service transformer, the design professional shall discuss the installation location with Owner's Representative. ISU's general preferred type and location is an exterior liquid-filled padmount transformer. If an interior dry-type transformer is instead justified for the facility, the design professional shall designate a permanent transformer entrance and exit path in and out of the building that needs to be maintained for the life of the building.

26 05 00 ELECTRICAL COMMON WORK RESULTS

A. BASIC ELECTRICAL MATERIALS AND METHODS

1. At exterior walls below grade or other damp locations, specify electrical equipment mounted on standoffs.

2. In general, do not specify box extension rings.
 a. If box extension rings must be used, specify only one ring per box with wires extending 6 inches from the front edge of the extension ring.

3. In general, and especially for concealed boxes, specify the largest practical size device and junction boxes to provide space for future wiring changes and the following requirements.
 a. For concealed device boxes, specify 2-1/8 inch minimum depth.
 b. For concealed square boxes, plaster rings may be specified.
 c. For surface boxes, specify with 1/2 inch raised covers.

B. WIRE CONNECTIONS

1. Comply with the following requirements.
 a. Unless approved by the Owner's Representative, do not specify exothermic joints.
 b. For #8 AWG or larger, specify compression type connectors.
 c. For motor connections #8 AWG or larger, specify connections insulated with heat-shrink tubing.
 d. For the connection to the utility transformer, specify long barrel, 2 hole NEMA spaced, tin plated copper compression connectors with hot dipped galvanized or stainless steel hardware consisting of 1/2 inch bolts, washers, lock washers, and nuts.
 e. Do not specify split bolt connectors and tape.
 f. Do not specify insulation displacement contact type wire connectors (e.g. Scotchlok connector).

2. Where a circuit passes through an outlet box and is tapped, specify all leads pigtailed to the wiring device, including the equipment ground wire, to prevent loss of neutral or ground during maintenance work.

C. LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

1. Comply with the following requirements.
 a. Specify only stranded Type THHN/THWN copper wire except for service entrance cable, specify Type XHHW-2.
 b. Specify minimum 90º C insulation rating unless approved otherwise by the Owner's Representative.
 c. Do not specify direct buried cables.
 d. Specify all phase and neutral conductors to have colored insulation.
 e. All grounding conductors (isolated or equipment) to have green insulation.
 f. Specify the Owner's standard wiring color code as follows.
 1) All voltages and systems
a) Equipment ground = green.
b) Isolated ground = green with yellow stripe or green with yellow tape bands
c) Travelers for 3 way switches = violet

2) 208Y/120v, 3 Phase, 4 wire systems
 a) Phase A = Black
 b) Phase B = Red
 c) Phase C = Blue
 d) Neutral = White

3) 480Y/277v, 3 Phase, 4 wire systems
 a) Phase A = Brown
 b) Phase B = Orange
 c) Phase C = Yellow
 d) Neutral = Gray

Do not specify AC Cable or MC Cable for general wiring inside buildings.

D. GROUNDING AND BONDING

1. For power circuits, comply with the following requirements.
 a. Specify green insulated grounding conductor as follows.
 1) With feeder conductors to each new panelboard
 2) In the same conduit with power conductors from each motor control to the motor
 3) Inside any piece of raceway, regardless of type, size or length
 4) Underground secondary service duct bank runs
 b. Specify bonding jumpers installed around all concentric/eccentric knockout rings that are not removed.
 c. Specify suitable expansion and deflection fittings with grounding continuity in each conduit run at each point where the conduit crosses a building expansion joint.
 d. Specify an equipment grounding conductor installed with all surface raceway systems and bonded as follows:
 1) Bond one- and two-piece raceways at every box
 2) Bond each receptacle to its box
 e. Grounding electrodes for an existing building to include a minimum grounding field of three electrodes installed outside the building envelope, bonded together and bonded with the ground bus bar inside the electrical equipment room.
 f. Grounding field for a new building to include multiple ground rods interconnected with bare copper ground cable installed in multiple loops around the transformer area, electrical equipment rooms, emergency generator rooms, etc., bonded with ground risers to each piece of equipment, and bonded with the ground bus bar inside the electrical equipment room.
 g. Specify one (1) #3/0 AWG supply side bonding jumper in each conduit from the transformer low-voltage section to the building main switchboard. Specify copper busbar to be mounted to ground pad in transformer low-voltage compartment and connect all ground bonding jumpers to the busbar.
 h. Specify new grounding fields tested for resistance and specify a report submitted to the Owner's Representative showing layout and measured values.
 1) Specify grounding electrode resistance = 5 Ohms maximum.

2. For motor shafts, comply with the following requirements.
 a. For motors controlled by variable frequency drives, specify each exposed shaft is grounded to help prevent bearing damage.
b. Specify motors that have factory-installed shaft grounding or specify a field-installed shaft grounding product that requires no maintenance for the service life of the motor.
1) When grounding is field-installed, specify Aegis SGR (http://www.est-aegis.com/) or equivalent product approved by Owner’s Representative.

E. RACEWAY AND BOXES

1. General
 a. Where surface mounted electrical raceways are required and approved by the Owner’s Representative in existing buildings, specify minimum size 3/4 inch conduit or Wiremold 700 series surface raceway.
 b. Specify only threaded or compression fittings.
 c. Do not specify polyvinyl chloride (PVC) conduit for general raceway inside buildings.
 d. For flexible conduit, specify liquidtight flexible conduit by Carlon (http://www.carlon.com/) or approved equivalent.
 e. Specify insulated throat fittings or bushings at conduit terminations 1 inch and larger.
 1) Specify plastic bushings are installed to the full threaded depth of the bushing.
 f. Specify grounding type bushings for services or feeders.
 g. Specify sealing locknuts with PVC gasket for exterior electrical enclosure conduit connections.
 h. On 2 inch and larger conduits, specify double locknuts regardless of voltage involved.
 i. Specify an approved thread lubricant recommended for rigid steel and aluminum conduits to ensure better equipment grounding paths.
 j. Specify an approved thread sealant recommended for all underground (direct burial) threaded conduit joints.

2. Material
 b. Specify galvanized rigid steel conduit at the following locations.
 1) Raceways buried in the ground under concrete slabs-on-grade.
 2) All high voltage runs, independent of location
 3) Exposed exterior raceways
 4) Any raceway in hazardous areas
 5) Termination of duct bank runs at equipment or indoor areas.
 c. Specify electrical metallic tubing (EMT) that complies with UL Standard 797, Federal Specification WW-C-563 and ANSI C 80.3.
 d. Specify EMT at the following locations.
 1) Interior branch circuits exposed and concealed above suspended ceilings, in wall partitions, in masonry and in concrete
 2) Interior feeders, exposed or concealed
 3) Interior motor circuit wiring
 4) Interior control, signal and sound wiring exposed, concealed above suspended ceilings and in wall partitions.
 e. Specify rigid plastic conduit, schedule 40 PVC at the following locations.
 1) Underground secondary service duct bank encased in concrete
 a) Specify rigid galvanized steel elbows where conduit runs through a concrete slab or at a 90° duct sweep.
 2) Underground telecommunication service duct bank direct buried
3) Lightning protection down leads and individual ground conductors
4) Exterior site lighting not attached to a building
5) Underground circuits to underground electrical vaults for lights, receptacles and sump pumps
6) Underground circuits utilized for event temporary power sources
7) Underground circuits utilized for traffic controls

f. Specify rigid aluminum threaded conduit at the following locations.
 1) All steam tunnel lighting and convenience outlet circuits
 2) Interior of underground high voltage vaults for service to lights, receptacles and sump pumps

g. Exterior Ground Boxes in Earth:
 1) Specify Hubbell-Quazite ground box model PG1324BA00 and cover model PG1324CA009 for exterior ground box applications. Discuss need for larger size ground boxes with Owner’s Representative.
 2) For exterior wiring splices inside ground boxes, specify watertight rated splice material.
 3) Specify ground boxes installed on 6” of gravel or crushed rock.

h. Exterior Ground Boxes in Pavement:
 1) Specify precast concrete ground box to be installed in concrete or asphalt. See link for precast ground box detail: (http://www.iowadot.gov/erl/archiveapril2012/RS/content_eng/m42.pdf)

3. Installation
 a. Wherever possible, specify underground electrical duct bank runs installed at a minimum of 36 inches below grade to top of bank.
 1) Where 36 inches is not possible and is approved by the Owner's Representative, specify concrete encased ducts installed to the minimum burial depth required by the NEC.
 b. To all motors, heating and ventilating controls, and at other locations where vibration, movement, moisture, or oil-vapor atmosphere are encountered, specify liquid-tight flexible non metallic conduit with a continuous copper bonding conductor used for a connection no longer than 18 inches.
 c. For connections to recessed and chain-hung lighting fixtures, specify hot-dipped galvanized, single strip flexible steel conduit of length no longer than 6 feet.
 1) Conduit of 3/8” diameter may be specified.
 d. In corrosive atmospheres, specify plastic jacketed rigid steel galvanized conduit.
 e. Wherever possible, specify concealed wiring in ceilings, walls, slabs, pipe chases and furred spaces.
 f. Specify pull/junction boxes to be installed as follows.
 1) For 120 to 480 volt systems, install at maximum of 360° equivalent bends and at maximum 100 foot runs for all raceways.
 2) For control and fire alarm systems, install at maximum of 360° equivalent bends and at maximum 100 foot runs for all raceways.
 3) For Information Technology systems, install at maximum of 180° equivalent bends and at maximum 100 foot runs for all raceways.
 4) For high voltage systems, install at maximum of 180° equivalent bends and at maximum 100 foot runs for all raceways; confirm pull box size with the Owner’s Representative.
 g. With regard to Information Technology systems, for conduit to floor boxes approved by the Owner’s Representative, specify embedded within a thickened slab to maintain at least 2 inches of concrete cover on all sides.
 h. Conduit may be specified exposed only in mechanical rooms, electrical rooms and custodial closets.
 i. Specify exposed conduit installed as follows.
 1) In a direct line, with bends as long as practicable
2) Parallel to or at right angles with the lines of the building, located as close as possible to walls, ceilings, columns and other structural members, while providing adequate access to boxes, yet occupying a minimum of space.

3) Parallel and equally spaced where exposed conduits are grouped.

j. For exposed runs in finished areas, and for counter and workbench power and data outlets, specify Wiremold 4000 or larger surface metal raceways. Review applications of surface raceway use with Owner’s Representative.

k. Do not specify underground warning tape buried above exterior concrete ductbanks or conduits.

F. EMPTY CONDUIT SYSTEMS

1. Specify a continuous #12 nylon draw line with identification tag securely attached to both ends in each conduit.

2. Specify plastic plugs or covers for all openings to keep the system clean.

3. Specify a locator wire installed in all empty underground non-metallic conduit or duct instead of the nylon draw line.

 1) Specify solid copper 12 AWG with 30 mil polyethylene insulation Model PE-30 by Kris-Tech Wire Company (http://www.kristechwire.com/).

G. IDENTIFICATION

1. Specify the Owner's standard color codes for junction boxes and covers as follows.

 a. Fire Alarm = Red with "FA" stenciled on cover

 b. Emergency and Standby Power = Yellow

 c. Telecommunications = Brown

 d. Building Automation System = Blue

 e. Sound Systems = Gold

 f. Primary Distribution System = Gray

 g. 480/277 Volt = Orange

 h. 208/120 Volt System = White

2. In general, specify nameplates on the following items.

 a. Motor starters, motor controls, motor control centers, push-button stations, control panels and time switches.

 b. Disconnect switchboards, circuit breakers, contactors or relays in separate enclosures.

 c. Power receptacles where the nominal voltage between any contact is greater than 150V to ground.

 d. Special electrical systems identified at junction and pull boxes, terminal cabinets and equipment racks.

3. Specify signs 1-1/8 inches by 2-1/4 inches or larger.

4. Specify the nameplate to clearly describe the function or use of the particular equipment involved.

 a. Discuss panelboard naming convention with Owner during design. At a minimum:

 1) For panelboards and switchboards, specify nameplates to include the panel designation, voltage and phase of the supply, and where the circuit-feeding panel originates, such as the following example.

 Panel A
 480/277 V
 3 Ph - 4 W
 FED from "MDP"

 b. When equipment has more than one source of power, such as a separate control power source, specify all power sources are clearly identified on the nameplate at the equipment location.

 c. Specify all wires in panelboards are marked with the circuit number they serve.
d. Specify feeder conduits entering and leaving a panelboard or switchboard are clearly marked with their destination.

5. Specify receptacle device cover plates to receive an adhesive label with panelboard and circuit number displayed.

6. Materials - General
 a. Specify nameplates are fabricated from laminated phenolic plastic, black front and back with a white core, with lettering engraved through the outer covering.
 1) For push-button station starters, receptacles and similar devices where the nameplate is attached to the device plate, specify lettering 3/16 inches high.
 2) At all other locations, specify lettering 1/4 inch high unless otherwise detailed on the Drawings.
 b. Other types and sizes of signage may be specified if approved by the Owner's Representative.

H. SHORT CIRCUIT, DEVICE COORDINATION AND ARC-FLASH STUDIES
1. Specify Contractor to furnish a short-circuit study, a protective device coordination study and an arc flash hazard analysis study prepared by either the equipment manufacturer or a third party qualified engineer.
 a. The engineering firm hired by the Owner is not allowed to prepare these studies.
 b. Specify studies comply with NFPA 70E requirements and calculations are based on IEEE Standard 1584, current edition.
 c. Incorporate Owner-furnished standard specifications into the project bid specifications.
2. Specify studies to include the required scope for the type of project as follows.
 a. New building site: Include all electrical systems throughout the facility.
 b. Major addition to an existing facility: Include all new construction and any of the existing facility served from the building electrical system.
 c. Full building renovation: Include all electrical systems throughout the facility.
 d. Partial building renovation: Confirm with the Owner's Representative if studies are required.
3. Specify Contractor to furnish all data for studies except utility system required data furnished by Owner.
4. Arc Flash Labels
 a. Specify Contractor to furnish and install labels for the type of equipment as follows.
 1) At each 480, 240 or 208 volt panel board, lighting control and disconnect: 1 arc flash label
 a) Include all panels that are served through a 125 KVA or smaller transformer with a voltage of 240 or less
 2) At each motor control center: 1 arc flash label for each group of 3 sections
 3) At each local starter, VFD or other isolated equipment: 1 arc flash label
 4) At each low voltage switchboard: 1 arc flash label for each vertical section containing circuit breakers or exposed conductors if covers are removable
 5) At a main circuit breaker where the arc flash study indicated different hazard levels on the load and line side: 1 arc flash label on the load side and line side
 b. Properties
 1) Minimum size: 5 inches wide by 3.5 inches high
 2) Material: Durable polyester stock, self adhesive, designed to resist degradation from scuffing, chemicals, moisture and wide temperature fluctuations.
 3) Black ink laser-printed on a white background with a prominent red danger symbol and two yellow triangles - one for arc flash hazard and one for shock hazard
 4) Top layer protection: Polyvinyl polymer over-laminate to assure color stability, and resistance to UV, chemicals, and common cleaning solvents
 5) Suitable for use in either interior or exterior locations
c. Minimum Required Information
 1) Equipment name or identification number
 2) Voltage of equipment
 3) Flash Protection Boundary in feet and inches
 4) Calculated incident energy in calories per square centimeter (Cal/cm²)
 5) Working distance in inches of the calculated incident energy
 6) Issue date that matches completion of studies

26 09 00 ELECTRICAL SYSTEM INSTRUMENTATION AND CONTROL

A. CONTACTORS
 1. Specify tested and listed under UL508.
 2. Specify mechanically held type, with clearing contacts.

B. LIGHTING CONTROL DEVICES
 1. Interior Spaces
 a. General
 1) Design lighting control to exceed the current adopted edition of International Energy Conservation Code requirements wherever possible to minimize energy consumption, yet provide light quality that supports high occupant productivity and satisfaction.
 2) Design performance-based lighting control using only local sensors and switches; do not specify remote master control systems.
 3) Design control of artificial light levels to adequately compensate for varying daylight levels.
 4) Include proposed lighting control sequences and strategies in the Project Design Narratives submitted to the Owner for review during the design process.
 5) Specify comprehensive testing of lighting controls at no additional cost to Owner to include, but not be limited to, the following events.
 a) A pre-installation meeting with attendance and participation by the Design Professional, Owner’s Representative, qualified manufacturer’s representative and installing contractor
 b) A post-installation walkthrough of controlled spaces to test, calibrate, troubleshoot and correct as necessary
b. Lighting Control Guidelines By Space Type

<table>
<thead>
<tr>
<th>Space Type</th>
<th>Sensor Mode</th>
<th>Time Delay</th>
<th>Multi-level Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auditoriums</td>
<td>No sensor49</td>
<td>NA</td>
<td>Yes4</td>
</tr>
<tr>
<td>Classrooms</td>
<td>Vacancy1</td>
<td>30 min</td>
<td>Yes4</td>
</tr>
<tr>
<td>Conference Rooms</td>
<td>Vacancy1</td>
<td>30 min</td>
<td>Yes4</td>
</tr>
<tr>
<td>Corridors</td>
<td>Occupancy23</td>
<td>30 min</td>
<td>Yes4</td>
</tr>
<tr>
<td>Custodial Rooms</td>
<td>Vacancy1</td>
<td>15 min</td>
<td>No</td>
</tr>
<tr>
<td>General Public Spaces</td>
<td>Occupancy23</td>
<td>30 min</td>
<td>Yes4</td>
</tr>
<tr>
<td>Laboratories - Computer</td>
<td>Vacancy1</td>
<td>30 min</td>
<td>Yes4</td>
</tr>
<tr>
<td>Laboratories - Research</td>
<td>Vacancy1</td>
<td>30 min</td>
<td>Yes4</td>
</tr>
<tr>
<td>Mech & Elec Rooms > 200 SF</td>
<td>No Sensor6</td>
<td>NA</td>
<td>No</td>
</tr>
<tr>
<td>Mech & Elec Rooms ≤ 200 SF</td>
<td>Vacancy1</td>
<td>30 min</td>
<td>No</td>
</tr>
<tr>
<td>Open Offices</td>
<td>Vacancy1</td>
<td>30 min</td>
<td>Yes4</td>
</tr>
<tr>
<td>Private Offices</td>
<td>Vacancy1</td>
<td>15 min</td>
<td>Yes4</td>
</tr>
<tr>
<td>Public Restrooms & Lactation Rooms</td>
<td>Occupancy2</td>
<td>30 min</td>
<td>No</td>
</tr>
<tr>
<td>Stairwells</td>
<td>Occupancy23</td>
<td>30 min</td>
<td>Yes4</td>
</tr>
<tr>
<td>Storage Rooms</td>
<td>Vacancy1</td>
<td>15 min</td>
<td>No</td>
</tr>
<tr>
<td>Telecom Rooms</td>
<td>Vacancy1</td>
<td>30 min</td>
<td>No</td>
</tr>
<tr>
<td>Vestibules</td>
<td>Occupancy23</td>
<td>30 min</td>
<td>Yes4</td>
</tr>
</tbody>
</table>

NOTES:
1. A sensor set to vacancy mode operates “manual-on & auto-off”, turning lights off following a time delay when it detects the space is unoccupied. The manual-on switch can also turn lights off.
2. A sensor set to occupancy mode operates “auto-on & auto-off”, turning lights on when it detects the space is occupied and turning lights off following a time delay when it detects the space is unoccupied. It also may have a manual override on/off switch.
3. When turned off, the occupied space is still illuminated for safe egress by lighting on a separate circuit. See paragraphs d.2)b) and d.2)b)(1) below.
4. Dimmable is acceptable if LED is specified. If fluorescent lighting is specified, step dimming shall be used.
5. A system shall be provided for manual-on, manual-off, and auto-off based on time. Provide a captive key override switch for time limit override.

c. Sensors

1) Specify spaces with ceiling mounted or high wall mounted sensors to also have a standard wall mounted toggle switch visible at each entrance for manual on-off control.
2) Specify installation of 10 extra feet of control wiring per sensor to allow possible relocation of sensor during the testing and troubleshooting process.
3) Define sensor detection areas and control sequences for each space.
 a) Consider dividing large areas into multiple groups or zones.
4) Specify type of occupant movement required for sensor detection, such as normal handwriting movement or computer mouse movement.
5) Specify initial sensor sensitivity and time delay settings.
6) Specify the sensor/control manufacturer determine sensor type, quantity and location.
7) Specify the sensor/manufacturer and installing contractor to be responsible for a complete system that performs as specified.
8) Acceptable manufacturers are as follows.
 a) Hubbell Building Automation Inc (http://www.hubbellautomation.com/)
 b) Leviton Manufacturing Co (http://www.leviton.com/)
 c) Wattstopper (http://www.wattstopper.com/)
d. Daylight Control

1) Define coverage areas and control sequences for each space.
 a) Consider dividing large areas into multiple groups or zones.

2) For spaces with sufficient daylight, design lighting controls to reduce artificial light levels, for example, manually by using wall switches or automatically by using photosensors.
 a) Control artificial light levels using either on/off switching or dimming systems.
 b) For lighting of occupied egress pathways, specify daylight sensors (single or multi-level or dimmable type) that control artificial lighting to provide a light level of at least 10 foot-candles at the walking surface (as recommended for corridor spaces by the IESNA Lighting Handbook, 9th edition) when daylight levels fall below 10 foot-candles at the walking surface.
 (1) The use of daylight sensors to control egress lighting as described above has been approved by the State Fire Marshal’s office in response to a formal request by the Owner.

3) Specify on/off switching in normally unoccupied spaces. Discuss the function of these spaces with Owner’s Representative early in the design phase.

4) Consider specifying automatic dimming controls for normally occupied or task oriented spaces to minimize user distraction.
 a) Wherever automatic control is specified, also specify manual override control.

5) Specify non-proprietary 0-10 volt dimming ballasts that function correctly with controllers from multiple manufacturers.
 a) Acceptable manufacturers are as follows.
 (1) Philips Advance (http://www.advance.philips.com/)
 (2) Osram Sylvania (http://www.sylvania.com/)
 (3) GE Lighting (http://www.gelighting.com/na/)

6) Specify the daylight control manufacturer to determine device type, quantity and location.

7) Specify the daylight control manufacturer and installing contractor to be responsible for a complete system that performs as specified.

8) Acceptable manufacturers are as follows.
 a) Hubbell Building Automation Inc (http://www.hubbellautomation.com/)
 b) Leviton Manufacturing Co (http://www.leviton.com/)
 c) Wattstopper (http://www.wattstopper.com/)

2. Exterior Spaces

a. Specify pole mounted fixtures controlled by individual photocells.
 1) Owner-furnished pole mounted fixtures include a standard photocell receptacle.

b. Specify building mounted fixtures controlled by the following methods in order of preference.
 1) Building automation system (BAS), which is normally preferred
 2) Photo cell/contactor combination
 3) Photo cell on each fixture
26 20 00 LOW-VOLTAGE ELECTRICAL SYSTEM

A. BUILDING DISTRIBUTION DESIGN
 1. For the service transformer’s secondary voltage, design using either 120/208 or 277/480 volts depending on program requirements.
 a. Minimize the use of 120/208 volt dry type step-down transformers wherever possible.
 2. Design using 480/277 volt for motors and general lighting loads in larger facilities.
 3. Design using 208/120 volts for control, receptacle and task lighting loads in larger facilities.
 4. Design using 208/120 volts for all loads in smaller buildings and in residence system facilities.
 5. Do not design using step up transformers unless approved by the Owner's Representative.
 6. Do not design using 240 volt equipment unless approved by the Owner's Representative.

B. DRY TYPE TRANSFORMERS
 1. For smaller dry type transformers used inside buildings, specify shielded type for its electrical noise reduction qualities.
 2. Specify dry type, low loss, high efficiency transformers that meet the following requirements.
 a. Comply with US Department of Energy 2016 Standards or NEMA TP-1 performances for 15 to 500 kVA sizes
 b. Impedances between 4.0% and 6.6%
 c. All copper windings
 d. 115 degree C rise with 220 degree C insulation system
 e. Self cooled using no fans
 f. Sound level per NEMA ST-20
 g. Six 2-1/2% taps (2 ANFC and 4 BNFC).
 3. To reduce noise, specify transformers are connected with flexible conduit, have internal vibration isolation or are mounted on isolation pads.
 4. Consult with the Owner's Representative with respect to designing with oversize or special transformers and oversize neutral conductors, due to increasing use of computer equipment with switching type power supplies that generate harmonic currents.
 5. Acceptable manufacturers are as follows.
 a. ACME Transformers Pro (http://www.acmetransformerspro.com)
 b. Eaton Corp (http://www.eaton.com/Electrical/USA/ProductsandServices/ElectricalDistribution/)
 d. Schneider Electric Square D (http://products.schneider-electric.us/products-services/products/)
 e. Siemens Corp (http://www.sea.siemens.com/us/products/powerdistribution/Pages/power_distribution.aspx)
 f. Approved equivalent

C. SWITCHBOARDS
 1. Specify to contain the following instruments.
 a. Multifunction metering package
 b. Metering grade potential transformers and current transformers
 c. Master metering following requirements under Section 26 20 00 E.1. Electrical Meters
 d. Building Automation metering following requirements under Section 26 20 00 E.1. Electrical Meters
 e. LEED metering following requirements under Section 26 20 00 E.1. Electrical Meters
 2. Specify 50% additional breaker “growth space” minimum, or space for a future switchboard section.
3. Specify copper buss bars only.
4. Specify series rated equipment that is properly identified.
5. Specify current transformer leads wired to 6 pole shorting type terminal blocks.
6. Specify containing a spare 3 pole circuit breaker of 400 to 800 amps as determined by the Owner's Representative.
7. Specify an internal mounted surge protective device (SPD) at service entrance main switchboard and other locations required per NEC.
8. Acceptable manufacturers are as follows.
 a. Eaton Corp (http://www.eaton.com/Electrical/USA/ProductsandServices/ElectricalDistribution/)
 c. Schneider Electric Square D (http://products.schneider-electric.us/products-services/products/)
 d. Siemens Corp (http://www.sea.siemens.com/us/products/powerdistribution/Pages/power_distribution.aspx)
 e. Approved equivalent

D. PANELBOARDS
1. Specify hinged door-in-door construction for both enclosure and breaker access
2. Specify keyed locks for panelboards with 42 circuits or more.
3. Specify bolt on type breakers rated 60/75º C and 10,000 AIC minimum.
4. Specify the equipment ground bar bolted to the enclosure.
5. Specify a neatly lettered directory card that clearly shows the following information.
 a. Panel name
 b. Breaker size & feed location to the panel
 c. Final room numbers
6. Specify minimum "Integrated Equipment Short Circuit Rating".
7. Specify a minimum of 25% additional spare 20 amp single pole breakers or 25% additional blank spaces for future expansion.
8. Specify a 42 circuit panel as a minimum for normal situations.
 a. It is acceptable to specify larger than 42 circuit panels, based on the number of circuits required in an area. Consult with Owner's Representative prior to specifying these panels.
 1) 84 pole panel boards are commonly specified for dedicated laboratory locations only.
 b. Instead, provide additional feeder circuits and additional single panels, which usually results in smaller feeder circuits and lower interrupting capacity requirements at the panelboards.
 c. Locate each panelboard near the center of its service area for economical branch circuit lengths.
9. Specify tested and labeled per UL 67.
10. Do not specify aluminum buss bars.
11. Acceptable manufacturers are as follows.
 a. Eaton Corp (http://www.eaton.com/Electrical/USA/ProductsandServices/ElectricalDistribution/)
 c. Schneider Electric Square D (http://products.schneider-electric.us/products-services/products/)
 d. Siemens Corp (http://www.sea.siemens.com/us/products/powerdistribution/Pages/power_distribution.aspx)
 e. Approved equivalent
12. Specify manufacturer must have single-pole GFCI breakers up to 30 amps and two-pole GFCI breakers up to 50 amps readily available for use by the Owner.
13. Specify all connections re-torqued after installation.
14. Specify flush mounted panels to have minimum 7 square inches of raceway area to an accessible junction box either above lift out ceilings or below access floors.
 a. Specify junction boxes are sized as large as space permits for future conduit entries.

15. Panelboard Locations
 a. Do not locate panels in hallways, stairwells or other public areas of the building.
 b. Locate panels for classrooms, offices, restrooms, break rooms and similar public areas in secure locations such as a mechanical room or similar type of space controlled by the Owner’s maintenance personnel.
 1) Do not locate panelboards in custodial spaces.
 2) Where public areas require multiple panels due to the area or number of rooms served, locate panelboards in a dedicated or secured electrical room.
 c. Locate panelboards for laboratories, research areas, server rooms, information technology and similar type spaces within their respective spaces.

E. ELECTRICAL METERS

1. Meter Instrument Transformers
 a. Specify potential transformers and current transformers are furnished and installed by the Contractor at service entrance equipment.
 1) For potential transformers, specify 120 volts at the secondary and overcurrent protection at both the primary and secondary.
 2) For current transformers, specify 5 amp secondary and all leads terminated on shorting type terminal blocks accessible in the switchboard.
 3) Specify instrument transformers in the multifunction metering package for switchboard, utility metering and Building Automation System metering.

2. Utility Meter
 a. Specify the Owner will furnish the following standard kilowatt hour/demand meter.
 1) Elster Alpha-Plus electronic meter, Form 6S, 13 terminal, 120 to 480 volt range, class 20, 2.5 Amp transformer rated, 15 minute demand for 3 phase 4 wire Wye service
 2) Wired with a 120 volt input
 b. Specify the Owner will install the KWH meter described above in a socket furnished, installed and wired by the Contractor and located adjacent to service entrance equipment.
 1) Specify the meter socket to have the following features.
 a) Automatic circuit closing design
 b) Current and voltage test switch
 c) Two pole fuse block
 d) All current leads to automatically short out when meter is removed or test switch is opened
 e) Two piece cover
 c. Specify meter socket wired as shown in Owner’s standard wiring diagrams.

3. Building Automation Meters
 a. Specify the Owner’s standard VERIS meter compatible with the Owner’s Building Automation System.
 b. Specify a VERIS meter mounted remotely from building service entrance equipment in a separate cabinet.
 c. Specify a VERIS meter wired as shown in Owner’s standard wiring diagrams.

4. Service Equipment Multifunction Meters
a. Specify integral to service entrance equipment.
b. Display the following information at a minimum.
 1) Voltages - all phase to phase and phase to ground
 2) Current - All phases
 3) KW, KVAR and KVA
 4) Power Factor
 5) Total Kilowatt Hours
c. Consult with the Owner’s Representative prior to specifying additional features or communication options.

5. LEED Measurement and Verification Meters
 a. Design the electrical distribution system to limit LEED meters to one for receptacle loads and one for lighting loads.
 b. Determine mechanical system loads by using Building Automation System Meters to subtract receptacle and lighting consumption.
 1) Additional meter locations will require approval by the Owner’s Representative.
 2) Specify VERIS Meters mounted remotely from building service entrance equipment or distribution panel in a separate cabinet.
 c. Specify VERIS meters connected to the Building Automation System.
 d. Specify VERIS meters wired as shown in Owner’s standard wiring diagrams.

6. Do not specify submeters.

F. DISTRIBUTION EQUIPMENT
 1. Multi-Outlet Assemblies
 a. Specify Legrand Wiremold Plugmold 2400-PM.
 2. Wiring Devices
 a. Specify devices with pigtails or clamp type wire connections.
 1) Do not specify wiring devices with crimp on connections.

G. CIRCUIT PROTECTIVE DEVICES
 1. Fuses
 a. For fuses 600 volts or less, specify classes RK1, RK5, J or L.
 b. Do not specify spare fuses of 600 volts or less.
 2. Enclosed Switches and Circuit Breakers
 a. Specify fusible type disconnects have rejection devices and current limiting fuses.

H. MOTOR CONTROLS AND CONTACTORS
 1. Specify tested and labeled under UL508.
 2. Specify combination starters and motor control centers to have RK5 or RK1 fuses and rejection devices, with fuses sized to act as back up to overload heaters.
 3. Specify phase loss, phase unbalance and phase reversal protection for the following three phase motors.
 a. All critical motors, regardless of size, such as hydronic radiation pumps, etc.
 b. All 5 horsepower and larger motors.
 4. Specify only NEMA type overload heaters (Class 20).
 5. Specify only NEMA sized motor starting contactors.
6. Acceptable manufacturers are as follows.
 a. Eaton Corp (http://www.eaton.com/Electrical/USA/ProductsandServices/AutomationandControl/index.htm)
 d. Schneider Electric Square D (http://products.schneider-electric.us/products-services/products/)
 e. Siemens Corp (http://www.sea.siemens.com/us/products/powerdistribution/Pages/power_distribution.aspx)
 f. Approved equivalent

7. For motor control circuits, specify the following.
 a. Specify 120 VAC control voltage.
 b. To prevent uncontrolled restarts of equipment which could overload building electrical systems, specify momentary contact control circuits on all but small motor applications.
 1) An exception is critical equipment, such as hydronic radiation pumps, animal room air handling equipment, etc.
 c. For pilot lights, specify transformer push-to-test type red neon that indicates "On".
 1) No "Off" pilot light is required.

8. For motors above 40 horsepower without variable speed drives, generally specify solid state reduced voltage starters, particularly on belt drive equipment.

I. VARIABLE-FREQUENCY MOTOR CONTROLLERS
 1. General
 a. Specify all drive components be "burned in" as sub assemblies and entirely drive tested under load before shipment.
 1) Because full load endurance testing is not considered a cost-effective option, do not specify.
 b. Wherever possible, specify single motor drives instead of multi motor drives.
 c. Do not specify regenerative braking.
 d. Unless approved by the Owner's Representative, do not specify current source drives.
 e. Specify an automatic-restart-after-power-outage feature that is field selectable.
 1) To reduce noise, specify notch depth 5 percent or less and voltage distortion 3 percent or less on the line side of the drive.
 2) Design to reduce objectionable noise from either the drive or the motor.
 g. Where disconnect or transfer switches are used, specify an interlock switch is installed to shutdown the drive before the main switch poles open.
 h. Consider specifying a manufacturer only if it has an established authorized distributor and service facility within the state of Iowa.
 i. Acceptable manufacturers are as follows.
 1) ABB (http://www.abb.com/ProductGuide/)
 2) Danfoss NA (http://www.danfoss.com/North_America/Products/Categories/)
 3) Eaton Corp (http://www.eaton.com/Electrical/USA/ProductsandServices/AutomationandControl/index.htm)
 6) Siemens Corp (http://www.sea.siemens.com/us/products/powerdistribution/Pages/power_distribution.aspx)
 7) Schneider Electric Square D (http://products.schneider-electric.us/products-services/products/)
8) Toshiba Industrial Systems (http://www.toshiba.com/ind/)
9) Approved equivalent
j. Specify keypad programming types with digital readout

2. Output Requirements:
 a. Generally specify 480 or 208 VAC motors for all new and most existing applications.

3. Specify the following performance requirements.
 a. Capable of 110 percent rated current for 1 minute
 b. Working frequency range = 6 to 60 Hz.
 c. Speed regulation = +/- 1/2 percent of maximum.
 d. Adjustable linear acceleration & deceleration, with range approximately 1 to 60 seconds.
 e. Accept 4 to 20 milliamp (isolated and ungrounded) speed input signal.
 f. Accept Start/Stop momentary contact or maintained contact 120 VAC devices.
 g. Separate, form "C" contacts, rated 1 Amp @ 120 VAC, to indicate "inverter fault" & "drive run".
 h. Input power factor of at least 0.95 throughout the speed & load range
 i. Displacement power factor of not less than 0.95 lagging at all loads and speeds

4. Protection Requirements
 a. Specify to endure the following faults without permanent damage.
 1) Short circuit and/or ground fault at output terminals
 2) Input over-voltage, under-voltage, phase loss or phase reversal
 3) Energized into a coasting motor
 4) Internal cooling fan failure
 b. Specify faults individually and visually indicated, with reset required before restart.

26 30 00 FACILITY ELECTRICAL POWER GENERATING AND STORING EQUIPMENT

A. PHOTOVOLTAIC COLLECTORS, WIND TURBINES, FUEL CELLS AND MICROTURBINES
 1. Approval by the Owner’s Representative is required for use of equipment at any location.
 2. Specify equipment to use a utility-interactive inverter or similar equipment that will automatically disconnect the local electric power production equipment from the utility upon loss of the utility source.
 3. Specify a fully labeled disconnecting means to isolated and lock-out the local electric power production equipment at the point of connection to the utility source.
 4. Specify connection point on the load side of the utility electrical meter.
 5. Specify to meet requirements of NEC Section 705, current addition.

26 32 00 PACKAGE GENERATOR ASSEMBLIES

A. ENGINE DRIVEN GENERATOR SETS
 1. Emergency generator requirements for projects require approval by the Owner’s Representative.
 2. Specify diesel fuel.
 3. Location
 a. Preferred location is outdoors on grade provided with a weather-proof, sound attenuated enclosure.
 b. Alternate location is within a building on either the basement or ground floor.
 c. Roof top locations require approval by the Owner’s Representative.
 4. Specify equipment to be designed with an integral fuel tank that is sufficient in capacity to operate a minimum of 12 hours under full load conditions.
5. Specify equipment meet current EPA emission standards.

6. Testing:
 a. Specify load bank test for onsite commissioning as follows: 2 hour load bank at 50% load, and 4 hour load bank at 100% load.

7. Generator Alarms
 a. Specify a standard list of generator alarms is submitted for use by Owner.
 b. Specify alarms points are parallel wired to provide following alarms/status to the Building Automation System:
 1) Generator Run Status
 2) Generator Trouble/Fault Alarm

8. Acceptable manufacturers are as follows.
 d. Kohler Co. (http://www.kohlerpower.com/industrial/category.htm?categoryNumber=11961§ionNumber=13261)
 e. MTU Onsite Energy (http://www.mtu-online.com/mtuonsiteenergy-northamerica/products/diesel-engine-systems-60-hz/)
 f. Waukesha (http://www.jobbersinc.com/waukesha_engine.htm)
 g. Approved equivalent

26 36 00 TRANSFER SWITCHES

A. AUTOMATIC TRANSFER SWITCHES

1. Specify open transition type or as special conditions dictate otherwise.
2. Specify the capability to test the generator with or without transfer of load.
3. Specify current transformers on load cables with digital indication on front of transfer switch.
4. Specify transfer switches serve emergency, legally required standby, and optional standby loads as required for the application per sections B, C, and D below.
5. Specify a timing sequence for transfer switch programming when multiple switches are required.
6. Specify all phases and neutral switched (4-pole transfer switch).
7. Transfer Switch Alarms
 a. Specify a standard list of transfer switch alarms is submitted for use by Owner.
 b. Specify only alarm points indicating “Transfer Switch in Emergency Position” are wired to the Building Automation System for each transfer switch.

8. Acceptable manufacturers are as follows.
 a. ASCO Power Technologies (http://www.ascoswitch.com/home.html)
 b. Caterpillar (http://www.cat.com/power-generation/automatic-transfer-switches)
 d. Generac (http://www.generac.com/Industrial/Transfer_Switches/)
 e. Kohler Co. (http://www.kohlerpower.com/industrial/category.htm?categoryNumber=12461§ionNumber=13261)
 f. Approved equivalent

B. EMERGENCY SYSTEMS

1. Emergency system loads for the building may include the following subject to approval by the Owner’s Representative.
 a. Illumination and exit signage for safe egress from the building
b. Fire Safety system (includes alarm, fire pumps, and ventilation system for smoke evacuation)
c. Cab lighting only in all elevators
d. Building Energy Management systems
 1) Include all master and sub panels.
e. Access Control systems
f. Telecommunication system equipment rooms

C. LEGALLY REQUIRED STANDBY SYSTEMS

1. Legally required systems for the building may include the following subject to approval by the Owner's Representative.
 a. Elevators
 1) Passenger elevators only if located in buildings described as follows.
 a) Buildings greater than three floors above grade, not including penthouses
 b) Buildings containing sleeping facilities.
 2) Freight elevators require approval by the Owner's Representative.
 b. Storm and sewage sump pumps
c. Condensate pumps
d. Building HVAC systems
e. Research laboratory refrigerators and freezers
f. Data processing/computer equipment areas
g. Animal hospital associated areas.

D. OPTIONAL STANDBY SYSTEMS

1. Optional or standby systems for the building may include the following subject to approval by the Owner's Representative.
 a. Research laboratory equipment
 b. Animal research associated area

26 40 00 ELECTRICAL PROTECTION

A. FACILITY LIGHTNING PROTECTION

1. Specify for all new buildings and major renovations/additions.
2. Where approved by the Owner’s Representative to prevent accidental impalement, specify a lightning rod product without a sharp point such as the Flathead™ Safety Air Terminal by National Lightning Protection (http://www.theprotectionsource.com/Flathead/flathead.html) or an equivalent product approved by the Owner’s Representative.

B. SENSITIVE ELECTRONIC EQUIPMENT

1. Purpose
 a. Sensitive electronic equipment requires special considerations to avoid power and operational problems.
2. Guidelines
 a. Harmonics
 1) Most newer electronic or computer based equipment uses technology which produces a high harmonic current content and may lead to power system problems.
 2) Consider specifying individual neutrals for each single-phase circuit and the over-sizing of any three phase neutral involved.
a) Design the neutral-to-ground voltage drop at the lowest possible level.

3) K-Rated Dry Type Transformers
 a) Specify copper winding and comply with US Department of Energy Candidate Standard Level (CSL-3) or NEMA Premium performances for 15 to 500 kVA sizes.
 b) Typical Application K-Ratings
 (1) K rating of 13 for general receptacle loading in classroom and office environments.
 (2) K rating of 20 for computer room, research laboratory and telecommunications equipment environments
 (3) K rating of 30 for data centers and other known high harmonic environments

4) Where isolation transformers are used, specify the shielded type.

b. Grounding
 1) Specify an insulated green wire included with all feeders and branch circuits.
 2) Specify bonding jumpers between receptacles and raceway.
 3) Specifying isolated ground circuits/receptacles is not generally necessary and, if requested by occupants, discuss with the Owner’s Representative.
 4) Specify the grounding and voltage drop of each receptacle in the final inspection using a “Sure Test” branch circuit analyzer or equivalent.

c. Surge Protective Device (SPD)
 1) Specify SPD receptacles on sensitive circuits.
 2) Consider specifying an additional upstream SPD.

d. Power conditioning
 1) Specifying power conditioners, voltage regulators and UPS units are not generally required and, if requested by occupants, discuss with the Owner’s Representative.

26 50 00 LIGHTING

A. GENERAL
 2. Include lighting energy reduction goals in the Electrical Systems Narrative submitted to the Owner for review.
 3. Locate fixtures to be easily accessible for maintenance and replacement by the Owner.
 4. For lighting control requirements, see this document under Section 26 09 00 B Lighting Control Devices.

B. INTERIOR LIGHTING
 1. Consult with Owner’s Representative early in the design phase of the project for the type of lighting to be specified. LED type lighting is the preferred type of lighting to be installed on campus, based on the scope, application and cost.
 2. Specify LED light fixtures to be:
 a. Correlated Color Temperature (CCT) of 4,000 degrees Kelvin and with a Color Rendering Index (CRI) of 85 or higher.
 b. IESNA LM-79-08 tested using absolute photometry criteria.
 c. Rated at greater than or equal to 70% lumen maintenance at 50,000 hours of operation.
 d. RoHS compliant and mercury free.
 e. Indoor LED fixture housing shall be designed to transfer heat from the LED board to the outside environment.
3. Specify interior LED light fixtures for the following applications:
 a. Recessed 2x2 or 2x4 in corridors, offices, meeting rooms, and other open office environments.
 b. Pendant mounted fixtures where higher ceilings allow for pendant lighting.
 c. Recessed downlights.
4. LED drivers:
 a. Power Factor rating greater than or equal to 0.90.
 b. Certified to be UL Class 2 for use in dry to damp location.
 c. Input voltage 120-277VAC
5. Fluorescent Light Fixtures
 a. Specify 4 foot long fluorescent fixtures with electronic program start ballasts.
 1) For recessed fixtures, specify low surface brightness diffusers.
 b. Specify fixture efficiency of no less than 70 percent.
6. Lamps
 a. Do not specify incandescent or High Intensity Discharge (HID) lamps
 b. For most general lighting, specify 28 watt lamps F32T8/TL835 with a Correlated Color Temperature (CCT) of 3500 degrees Kelvin and with a Color Rendering Index (CRI) of 85 or higher, 90,000 hour lamp.
 1) For spaces where a higher lumen output is required, special lamps may be specified.
 c. Specify fluorescent lamps to have a mercury content equal to or less than current NEMA requirements.
 d. Do not specify CFL lighting.
 e. Only specify lamps on the current list of Owner-stocked lamps, which is available by request from the Owner’s Representative.
 1) Do not specify non-stocked lamps unless approved by the Owner’s Representative.
 f. In the project fixture schedule, indicate the required lamp type and quantity for each fixture.
 g. Specify lamps furnished and installed by Contractor.
7. Ballasts
 a. Fluorescent Ballasts
 1) Specify ballasts with the following properties.
 a) Electronic integrated circuit, solid state, full light output, energy efficient type compatible with connected lamps and lamp combinations
 b) Certified by Electrical Testing Laboratory (ETL)
 c) Labeled by Certified Ballast Manufacturers Association (CBM)
 d) In compliance with FCC Regulations, Part 15, Subpart J, for electromagnetic interference
 e) In compliance with IEEE C62.41, Category A, for resistance to voltage surges for normal and common modes
 f) High frequency rapid start or, if controlled by occupancy or vacancy sensors, high frequency program start.
 g) Normal (0.88 range) ballast factor
 (1) Include other proposed ballast factors in the Electrical Systems Narrative submitted to the Owner for review.
 h) Class P type, high power factor, except otherwise approved by the Owner’s Representative
 i) Minimum 95 percent power factor
 j) Less than 10% Total Harmonic Distortion (THD)
k) Less than 5 percent lamp flicker
l) “A” sound rating except otherwise approved by the Owner’s Representative
m) Voltage matched to connected circuits
n) Normal rated lamp life not reduced by ballast connection method
o) Do not specify battery backup emergency ballasts.

2) Specify low temperature ballasts to comply with above requirements except ballasts may be Class P electromagnetic type with starting temperature of minus 20 degrees C or colder.

3) Do not specify electronic type dimming ballasts.

b. Acceptable manufacturers are as follows.
 1) Osram Sylvania (http://www.sylvania.com/)
 2) Phillips Advance (http://www.advance.philips.com/)
 3) Universal Lighting Technologies (http://unvlt.com/)

c. Specify to include complete ballast information with lighting submittals.

8. Space Requirements
 a. See FDM Part 1 Section 03 Space and Site Design under Subsections 03.03 through 03.10.

9. Lighting Control
 a. See in this document under Section 26 09 00 B Light Control Devices.

C. EMERGENCY/EXIT SIGN LIGHTING

1. Where an emergency generator source of power is available, specify un-switched (24 hour) emergency lighting only for building entrances, corridors and stairwells.

2. Where no emergency generator source of power is available, specify emergency lighting fixtures and exit signs powered from the unswitched portion of the lighting circuit feeding the area served and furnished with individual battery pack units.
 a. Specify self-diagnostic units capable of performing a 90-minute test locally, with indicator light and test button located to be clearly visible and easily accessible to maintenance personnel.

3. Specify switched emergency lighting to have a relay to override the switch position upon loss of power.

4. Locate exterior emergency lighting fixtures building-mounted above door height along the exterior path of egress.
 a. Maintain a minimum illuminance of 1.0 footcandles at ground level to a safe distance from the building.

5. Specify exit signs with white aluminum housing and red letters illuminated by light emitting diodes (LEDs).

6. Specify self-powered (battery type) exit signs with the following properties.
 a. Integral automatic high/low trickle charger in a self contained power pack
 b. Sealed, maintenance free nickel cadmium battery

7. Do not specify self-powered luminous type exit signs that contain a radioactive source.

8. Specify emergency lighting units with the following features.
 a. Self-contained type with integral self-diagnostics
 b. In compliance with UL 924
 c. Fully automatic solid state charger with minimum of two charging rates and a sealed transfer relay

9. Acceptable manufacturers are as follows.
 a. Dual-Lite (http://www.dual-lite.com/)
 b. Lithonia (http://www.lithonia.com/)
 c. Approved equivalent
D. EXTERIOR LIGHTING

1. General
 a. Perform photometric calculations and layouts based on standard ISU fixtures and pole heights.
 1) For details of standard fixtures and poles, see FDM Part 2/Support of Div 33/Utility Electrical Details.
 2) See Section 26 50 00 D.2. Typical Area Requirements for fixture types and mounting heights.
 3) Submit photometric calculations to the Owner’s Representative for review during the Design Development phase.
 b. Show applicable ISU standard lighting details on the Drawings.
 c. Specify the Owner will furnish the following products for installation by the Contractor.
 1) Exterior poles
 2) Pole mounted fixtures
 3) Breakaway bases
 4) Identification numbers
 d. Specify the Contractor furnish and install pole foundations, conduit, photocells, lamps and wire.
 e. Specify wiring installed in raceway both above grade and below grade.
 f. Specify the fixture supply voltage to be either 208 volts or 277 volts.
 g. Do not illuminate building exterior surfaces.
 h. Do not illuminate exterior artwork unless approved by the Owner’s Representative.
 i. For spaces other than those listed in Section 26 50 00 D.2., specify luminance requirements on the latest IESNA recommendations.

2. Typical Area Requirements
 a. Parking Lot Lighting
 1) ISU provided pole mounted fixtures as follows.
 a) LED light fixture with IES Type II distribution
 (1) KIM Model ETO/1A/ET2/90L4/4K/DB/A25/PICOPRISM
 (http://www.kimlighting.com/products/the_entablature)
 (2) No exceptions. **Fixture IES file to be provided by ISU as requested.**
 b) Fixture(s) mounted on 30 foot pole with precast foundation extending 30 inches above grade
 c) No more than 2 fixtures per pole mounted 180 degrees apart
 d) Maintained Luminance Levels
 (1) Minimum 0.8 foot candles on a horizontal surface at grade
 (2) Minimum 0.4 foot candles on a vertical surface 5 feet above grade
 (3) Average-to-minimum uniformity ratio not to exceed 4:1 at grade
 b. Roadway Lighting
 1) ISU provided pole mounted fixtures as follows.
 a) LED Cobrahead with IES Type II distribution
 (1) Cooper Lighting, Lumark part number LDRC-T2-B04-E-PER
 (2) No exceptions.
 b) Fixture(s) mounted on 30 foot pole-and-arm with 17 inch breakaway base
 c) Maintained Luminance Levels
 (1) Minimum 0.5 foot candles on a horizontal surface at grade
 (2) Average-to-minimum uniformity ratio not to exceed 3:1 at grade
2) Discuss the use of banner rated roadway poles with the Owner’s Representative.

c. Walkway Lighting

1) **ISU provided** pole mounted fixtures as follows.

 a) **LED light fixture** with IES Type II distribution

 (1) KIM Model ETO/1A/ET2/60L/4K/DB/A25/PICOPRISM
 (http://www.kimlighting.com/products/the_entablature)

 (2) No exceptions. **Fixture IES file to be provided by ISU as requested.**

 b) Fixture(s) mounted on 14 foot pole

 c) No more than 2 fixtures per pole mounted 180 degrees apart

 d) **Maintained Luminance Levels**

 (1) Minimum 0.3 foot candles on a horizontal surface at grade

 (2) Minimum 0.6 foot candles on a vertical surface 6 feet above grade

 (3) Average-to-minimum uniformity ratio not to exceed 4:1 at grade

d. Wall Mounted Lighting

1) Specify wall mounted fixtures as follows.

 a) **LED light fixture** with IESNA full cutoff classification with no up-light component

 (1) KIM LED Wall Director (http://www.kimlighting.com/products/wall_director) or approved equivalent

END OF DIVISION 26 ELECTRICAL